L-FUNCTIONS OF ELLIPTIC CURVES

Aynur Yalçıner
Selcuk University, Konya, Turkey
ayalciner@selcuk.edu.tr

Let E be an elliptic curve over the field of rational numbers \mathbb{Q} given by the minimal global Weierstrass equation:

$$
E: y^{2}+A_{1} x y+A_{3} y=x^{3}+A_{2} x^{2}+A_{4} x+A_{6}
$$

and let Δ_{E} be its discriminant. For each prime p we put

$$
a_{p}=p+1-\# E\left(F_{p}\right),
$$

where $E\left(F_{p}\right)$ is the reduction of E modulo p. The L-function associated to E is given by

$$
L(s, E)=\prod_{p \mid \Delta_{E}} \frac{1}{1-a_{p} p^{-s}} \prod_{p \nmid \Delta_{E}} \frac{1}{1-a_{p} p^{-s}+p^{1-2 s}} .
$$

The infinite product above is convergent for $\operatorname{Re}(s)>3 / 2$ and therefore we can expand it into a series $L(s, E)=\sum_{n \geq 1} a_{n} n^{-s}$.
In this talk, we show that the set of positive integers n such that $\left|a_{n}\right|$ is a generalized Fibonacci number has asymptotic density 0 .

Keywords. L-functions of elliptic curves, linear recurrence sequences.
This is a joint work with Florian Luca.

