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Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c
? xn + yn = zn ⇒ Fermat’s Equation
? y2 = x3 + ax + b ⇒ Elliptic Curve

Diophantine equations define algebraic curves and
algebraic surfaces.



Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c

? xn + yn = zn ⇒ Fermat’s Equation
? y2 = x3 + ax + b ⇒ Elliptic Curve

Diophantine equations define algebraic curves and
algebraic surfaces.



Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c
? xn + yn = zn ⇒ Fermat’s Equation

? y2 = x3 + ax + b ⇒ Elliptic Curve
Diophantine equations define algebraic curves and
algebraic surfaces.



Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c
? xn + yn = zn ⇒ Fermat’s Equation
? y2 = x3 + ax + b

⇒ Elliptic Curve
Diophantine equations define algebraic curves and
algebraic surfaces.



Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c
? xn + yn = zn ⇒ Fermat’s Equation
? y2 = x3 + ax + b ⇒ Elliptic Curve

Diophantine equations define algebraic curves and
algebraic surfaces.



Diophantine Equations

Diophantine equation⇒ integer solutions to a polynomial
equation with integer coefficients.
Some examples:

? ax + by = c
? xn + yn = zn ⇒ Fermat’s Equation
? y2 = x3 + ax + b ⇒ Elliptic Curve

Diophantine equations define algebraic curves and
algebraic surfaces.



Original Statement of FLT

‘It is impossible to separate a cube into two cubes or a fourth
power into fourth powers or, in general, any power greater than
the second powers of like degree. I have discovered a truly
marvelous demonstration, which this margin is too narrow to
contain.’



Fermat’s Last Theorem

Theorem (Wiles, Taylor-Wiles)
The equation

FLTn : xn + yn = zn

has no nonzero integer solutions if n > 2.

n = 1⇒ x + y = c, has infinitely many solutions

n = 2⇒ x2 + y2 = z2, has infinitely many solutions,
Pythagorean triple.
Another conic, x2 + y2 = 0.999999 has no rational
solutions, Things may change dramatically!



Fermat’s Last Theorem

Theorem (Wiles, Taylor-Wiles)
The equation

FLTn : xn + yn = zn

has no nonzero integer solutions if n > 2.

n = 1⇒ x + y = c, has infinitely many solutions

n = 2⇒ x2 + y2 = z2, has infinitely many solutions,
Pythagorean triple.

Another conic, x2 + y2 = 0.999999 has no rational
solutions, Things may change dramatically!



Fermat’s Last Theorem

Theorem (Wiles, Taylor-Wiles)
The equation

FLTn : xn + yn = zn

has no nonzero integer solutions if n > 2.

n = 1⇒ x + y = c, has infinitely many solutions

n = 2⇒ x2 + y2 = z2, has infinitely many solutions,
Pythagorean triple.
Another conic, x2 + y2 = 0.999999 has no rational
solutions,

Things may change dramatically!



Fermat’s Last Theorem

Theorem (Wiles, Taylor-Wiles)
The equation

FLTn : xn + yn = zn

has no nonzero integer solutions if n > 2.

n = 1⇒ x + y = c, has infinitely many solutions

n = 2⇒ x2 + y2 = z2, has infinitely many solutions,
Pythagorean triple.
Another conic, x2 + y2 = 0.999999 has no rational
solutions, Things may change dramatically!



First General Proof

By Mr. Le Blanc in 1823:

Theorem
If p and 2p + 1 are both prime, then xp + yp = zp has no
solutions for which xyz is not divisible by p.
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Germain & Gauss

Gauss:

‘...when a woman, because of her sex, our customs and
prejudices, encounters infinitely more obstacles than men, yet
overcomes these fetters and penetrates that which is most
hidden, she doubtless has the most noble courage,
extraordinary talent and superior genius. Nothing could prove
to me in a more flattering and less equivocal way that the
attractions of that science, which have added so much joy to my
life, are not chimerical, than the favor with which you have
honored it..’
...cinsiyetinden, geleneklerimiz ve önyargılarımızdan ötürü bir kadın,
erkeklere oranla çok daha fazla engelle karşılaşıyor, yine de bu
engelleri alt ediyor ve gizli saklı olana nüfuz edebiliyorsa, şüphesiz ki
o çok asil bir cesarete, olağanüstü bir yeteneğe ve üstün bir dehaya
sahiptir. Hiçbir şey bana, hayatıma büyük bir mutluluk katan o bilimin
cazibesinin asılsız olmadığını, o cazibeyi şereflendirişinizden daha
hoş ve kesin bir şekilde ispatlayamaz.
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Modern Approaches-Mordell Conjecture

Theorem
Two dimensional surfaces in 3 dimensional space can be
classified according to their genus.

Definition
The genus is the number of holes in the surface.

Mordell conjectured in 1922: If complex number solutions of
a Diophantine equation form a surface of genus ≥ 2 then the
equation has only finitely many rational solutions.

Faltings proved Mordell’s conjecture in 1983.
The result of Faltings⇒ xn + yn = zn can have only finitely
many solutions for n > 3.

Granville and Heath-Brown: the number of solutions of FLT -if they
exist- decreases as the exponent n increases, i.e. FLT is ‘almost
always’ true, if there are solutions they are few and very far between.
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Elliptic Curves

Definition
An elliptic curve E is a smooth, projective algebraic curve of
genus one, on which there is a specified point O. The point O
is called point at infinity.

Given by y2 = x3 + ax + b, when a,b rational numbers.
such as E : y2 = x(x − 1)(x + 1).
No cusp or self-intersection.
Solutions form a group with identity element O.
Complex solutions of such a cubic form a torus.
E(Q) = {(x , y)|x , y ∈ Q, y2 = x3 + ax + b},
y2 = x(x − 1)(x + 1) has only 4 points in E(Q).
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These curves are not ‘closed’. We should ‘close them up’.
This is done by adding another point to the curve, ‘point at
∞’. Denote this point as O.



Group Law on Elliptic Curves

We can ADD points on an elliptic curve, the point at∞ is the
identity element.

y2 = x3 − x+ 1

P

Q

P ⊕Q ⊕ R = O
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Elliptic Curve mod p

Example

E : y2 = x3 − x + 1, find solutions mod 3.
E(F3) = {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}.

Note that
point at∞ is always in the set of solutions, |E(F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51

Number of solutions increase as p increases.
Hasse’s Theorem: |Np − (p + 1)| ≤ 2

√
p.



Elliptic Curve mod p

Example

E : y2 = x3 − x + 1, find solutions mod 3.
E(F3) = {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}. Note that
point at∞ is always in the set of solutions, |E(F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51

Number of solutions increase as p increases.
Hasse’s Theorem: |Np − (p + 1)| ≤ 2

√
p.



Elliptic Curve mod p

Example

E : y2 = x3 − x + 1, find solutions mod 3.
E(F3) = {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}. Note that
point at∞ is always in the set of solutions, |E(F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51

Number of solutions increase as p increases.
Hasse’s Theorem: |Np − (p + 1)| ≤ 2

√
p.



Elliptic Curve mod p

Example

E : y2 = x3 − x + 1, find solutions mod 3.
E(F3) = {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}. Note that
point at∞ is always in the set of solutions, |E(F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51

Number of solutions increase as p increases.

Hasse’s Theorem: |Np − (p + 1)| ≤ 2
√

p.



Elliptic Curve mod p

Example

E : y2 = x3 − x + 1, find solutions mod 3.
E(F3) = {(0,1), (0,2), (1,1), (1,2), (2,1), (2,2)}. Note that
point at∞ is always in the set of solutions, |E(F3)| = 7.

We can do this modulo many other primes p.
Say Np is the number of solutions mod p.

p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51

Number of solutions increase as p increases.
Hasse’s Theorem: |Np − (p + 1)| ≤ 2

√
p.



ap = p + 1− Np,E : y2 = x3 − x + 1
p 3 5 7 11 13 17 19 23 29 31 37 41
Np 7 8 12 10 19 14 22 23 37 35 36 51
ap −3 −2 −4 2 −5 4 −2 1 −7 −3 2 −9

Can we predict ap?
For instance, is there a complex function f (z) which has

power series representation
∞∑

n=1
a′

nqn where q = exp2πi ,

ap = a′
p?

Example

For E : y2 = x3 − x + 1, there is such a complex function:

q- 3q3- 2q5- 4q7 + 6q9+ 2q11- 5q13 + 6q15+ 4q17- 2q19 + 12q21

+ 1q23−q25−9q27- 7q29- 3q31−6q33+8q35+ 2q37+15q39- 9q41+. . .

Can we predict ap? Yes, first observed by Eichler.
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Modular Elliptic Curves(MEC)

Consider the equation of a circle x2 + y2 = a2, this can be
parametrized by x = a cos t , y = a sin t .

A MEC is an extension of this idea to the more complicated
complex plane, with a special non-Euclidean geometry.
Modular forms are some special differential forms on
modular curves.
Modular forms on the complex plane have symmetries wrt
the more complicated transformations f (z) 7→ f ( az+b

cz+d ).
Modular forms have power series representations i.e. they

can be written as
∞∑

n=1
a′

nqn where q = exp2πi .

a MEC is an elliptic curve which can be ‘parametrized’ by a
modular form. (The ap’s coming from the e.c. correspond
to the coefficients of a modular form a′

p.)
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Modularity Conjecture

Taniyama(55) and Shimura(57): Every elliptic curve over
rational numbers is parametrized by a modular form.
OR Every elliptic curve over Q is modular.

Taniyama, 1927-1958 Shimura, 1930-



Modularity Theorem

by Wiles, Taylor-Wiles, Breuil, Conrad, Diamond, Taylor

Every elliptic curve over Q is modular.

f = q +
∑

cnqn ↔ Ef/Q

s.t. for almost all primes `, c` = a`(Ef ) = ` + 1− |E(F`)|

Elliptic Curves Modular Forms

f(z) =
∑
anq

ny2 = x3 + ax+ b

How to compare?
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FLT?



In order to understand the ideas behind the proof of Modularity
theorem one needs to know a lot about:

Elliptic Curves
Modular Forms

Galois Representations
How to use these ideas to solve Diophantine equations such as
FLT?



In order to understand the ideas behind the proof of Modularity
theorem one needs to know a lot about:

Elliptic Curves
Modular Forms
Galois Representations

How to use these ideas to solve Diophantine equations such as
FLT?
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Theorem
E elliptic curve over Q. If E satisfies a technical condition then
E corresponds to a special modular form (called newform ) of
level Np.

Technical condition:= E doesn’t have an isogeny
whose kernel has size p for a prime p ≥ 5

E has an invariant, called conductor, NE ∈ Z, easy to
compute given the equation of E
Np is a small integer which divides the conductor of E
There is an explicit recipe to find Np

Given Np there are only finitely many newforms of level Np.
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Frey Elliptic Curve

How to use Ribet’s theorem to solve FLT: xp + yp = zp?

Assume FLT has a solution and associate the solution to an
elliptic curve E called the Frey curve if possible.

Definition
Say a,b, c is a nontrivial solution to FLTp, i.e. ap + bp = cp then

Ea,b,c : y2 = x(x − ap)(x + bp)

is called Frey elliptic curve.

Frey elliptic curve has very strange properties.

E satisfies the ‘technical condition’ i.e.E doesn’t have any
p-isogenies (by a theorem of Mazur)
Conductor of E , NE = Π`|abc`

Ribet’s formula→ Np = 2



Frey Elliptic Curve

How to use Ribet’s theorem to solve FLT: xp + yp = zp?

Assume FLT has a solution and associate the solution to an
elliptic curve E called the Frey curve if possible.

Definition
Say a,b, c is a nontrivial solution to FLTp, i.e. ap + bp = cp then

Ea,b,c : y2 = x(x − ap)(x + bp)

is called Frey elliptic curve.

Frey elliptic curve has very strange properties.

E satisfies the ‘technical condition’ i.e.E doesn’t have any
p-isogenies (by a theorem of Mazur)
Conductor of E , NE = Π`|abc`

Ribet’s formula→ Np = 2



Frey Elliptic Curve

How to use Ribet’s theorem to solve FLT: xp + yp = zp?

Assume FLT has a solution and associate the solution to an
elliptic curve E called the Frey curve if possible.

Definition
Say a,b, c is a nontrivial solution to FLTp, i.e. ap + bp = cp then

Ea,b,c : y2 = x(x − ap)(x + bp)

is called Frey elliptic curve.

Frey elliptic curve has very strange properties.

E satisfies the ‘technical condition’ i.e.E doesn’t have any
p-isogenies (by a theorem of Mazur)
Conductor of E , NE = Π`|abc`

Ribet’s formula→ Np = 2



Fermat’s Last Theorem

Definition
Say a,b, c is a nontrivial solution to FLTp, i.e. ap + bp = cp then

Ea,b,c : y2 = x(x − ap)(x + bp)

is called Frey elliptic curve.

Ribet’s formula→ Np = 2
Therefore by Ribet’s thm:

⇒ Ea,b,c is associated to a newform of level Np = 2.
⇒ But there is no such newform!
⇒ Hence, contradiction, FLT doesn’t have a solution (a,b, c).
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Summary

Wiles was the person who did the important final work on the
theorem by proving a form of the modularity conjecture needed
to prove FLT, the entire enterprise was the work of many
people. And it is all their contributions, taken together, which
brought the final solution.

Kummer Ideals→ Mazur Eisenstein Ideal−→ Frey Frey Curve−→

Serre,Ribet,Taniyama,Shimura ST implies FLT−→ Wiles⇒ FLT
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Epilogue From Barry Mazur

Barry Mazur:

‘Number theory produces, without effort, innumerable
problems which have a sweet, innocent air about them,
tempting flowers; and yet ... number theory swarms with
bugs, waiting to bite the tempted flower-lovers who, one

bitten, are inspired to excess of effort!. ’

(From number theory as gadfly)
Sayı teorisi, çok da çaba sarf etmeden, tatlı ve masum, sayısız

problem üretir; gönülçelen çiçekler gibidir. Ama aynı sayı teorisi,
baştan çıkmış çiçek severleri ısırmayı bekleyen böceklerle doludur.
kişi bir kere ısırılmaya görsün, aşırı çaba sarf etmeye hevesli hale

gelir.
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